
3.5. DESIGNING CODE WITH LOOPS 73

3.5 Designing code with loops

In the last two sections we have seen while-loops and for-loops. Beginning
programmers are often mystified as to when to use which type of loop. The
good news is that it often doesn’t matter. In many situations we can set up
natural, easy to read code with either type of loop. For example, the following
blocks of code both sum the numbers from 1 to 10:

sum = 0
for x in range (1 , 1 1) :

sum = sum + x

print (sum)

sum = 0
x = 1
while x <= 10 :

sum = sum + x
x = x + 1

print (sum)

In either case the loop generates the list of numbers; inside the loop we have
code to compute their sum. The first of these is a little shorter, but not enough
to matter. To someone familiar with the syntax of for-loops and while-loops
they seem equally clear. In a situation like this you can use either looping
construct.

Suppose we want to generate a sequence of ten coin tosses: ”Heads” or
”Tails”. At the end of section 2.4 we discussed the random library that has
random number generators. In this case we will use randint (0, 1), which gives
random numbers that are either 0 or 1. The loop we use is just a counting
device; it will generate values, but we won’t do anything with them other than
to count how many there are. Again, we could do this with either looping
construct:

from random import ∗

for x in range (1 0) :
number = r a n d i n t (0 , 1)
i f number == 0 :

print (”Heads”)
else :

print (” T a i l s ”)

from random import ∗

x = 0
while x < 10 :

number = r a n d i n t (0 , 1)
i f number == 0 :

print (”Heads”)
else :

print (” T a i l s ”)
x = x + 1

74

Programs often use loops to generate sequences of values that are to be
manipulated in some way. For example, suppose we want to count the number
of leap years between two given years, such as 1878 and 1945. There are two
separate tasks here: one is to generate the sequence of years and the other is
to determine which of them are leaps years and keep track of their number.
The first task requires a loop, and it doesn’t make much difference whether we
use a for-loop or while-loop for it. The second task needs an elaborate if -
statement; we saw code for this in Program 3.1.3. Here again we show parallel
constructions, with for- and while-loops.

s t a r tY e a r = 1878
f i n a l Y e a r = 1945
leapCount = 0
for yea r in range (s t a r tYea r , f i n a l Y e a r +1):

i f yea r % 400 == 0 :
i s L e ap = True

e l i f yea r % 100 == 0 :
i s L e ap = Fa l s e

e l i f yea r % 4 == 0 :
i s L e ap = True

else :
i s L e ap = Fa l s e

i f i s L e ap :
l eapCount = leapCount + 1

print (”%d l e ap y e a r s . ” % leapCount)

Counting leap years, for-loop

3.5. DESIGNING CODE WITH LOOPS 75

s t a r tY e a r = 1878
f i n a l Y e a r = 1945
leapCount = 0
yea r = s t a r tY e a r
while yea r <= f i n a l Y e a r :

i f yea r % 400 == 0 :
i s L e ap = True

e l i f yea r % 100 == 0 :
i s L e ap = Fa l s e

e l i f yea r % 4 == 0 :
i s L e ap = True

else :
i s L e ap = Fa l s e

i f i s L e ap :
l eapCount = leapCount + 1

yea r = yea r + 1
print (”%d l e ap y e a r s . ” % leapCount)

Counting leap years, while-loop

In section 3.4 we saw a similar program where we wanted to find the prime
numbers in a range of integers. We used a for-loop to generate all of the
integers in this range, but we could have just as easily used a while-loop. Later
in that section we wanted to find the first N prime numbers for some value N.
That would not have been easy to do with a for-loop because we didn’t know
the endpoint of the range of values to generate as candidates.

When there is a definite sequence of values that need to be processed, for-
loops are often more natural; this was the reason for-loops were invented. Sup-
pose, for example, that we want to count the number of instances of the letter
’a’ in the word ’abracadabra’. We can walk through the letters of the string
with a simple for-loop:

for l e t t e r in ” ab racadab ra ” :

With a while-loop we need to use numeric indexes for the string:

i n d e x = 0
s = ” abracadab ra ”
while i n d e x < len (s) :

l e t t e r = s [i nd ex]

Here are the resulting programs:

76

count = 0
for l e t t e r in ” ab racadab ra ” :

i f l e t t e r == ”a” :
count = count + 1

print (count)

i nd ex = 0
s = ” abracadab ra ”
count = 0
while i n d e x < len (s) :

l e t t e r = s [i nd ex]
i f l e t t e r == ”a” :

count = count + 1
i ndex = index + 1

print (count)

The version with for-loops is certainly shorter. More importantly, it is more
natural and easier to read. This means the programmer is more likely to write
it correctly.

The following rule of thumb can help you decide which looping construct to
use:

If you need to generate a definite list of values
where you can say in advance which values belong
in this list, for-loops are usually easier to use. If
you need to generate an indefinite list of values,
for which you cannot say in advance where to stop,
while-loops are usually easier.

We will illustrate these ideas by developing a program that prints a calendar
for one month. In the next few chapters we will make several versions of this
program to illustrate various programming constructs. This version asks the
user to input some of the information about the calendar that we will later be
able to compute directly.

Here is typical output from the program:

3.5. DESIGNING CODE WITH LOOPS 77

July 2009

Sun Mon Tu Wed Th Fri Sat

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

We will ask the user to enter the name of the month: (”July 2009” in this
case), the number of days in the month (here 31) and the day of the week the
month starts on (here 3 for Wednesday). We will call these three variables
monthName, daysInMonth, and startsOn. Our job is to center the name, to print
the header with the names of the days of the week, and then to print a table
with the dates under the appropriate days.

The first decision is to settle on how we will print the table. It is easy to
generate the numbers that need to be printed: 1 up to daysInMonth. We can do
this with either

for day in range (1 , daysInMonth + 1) :

or

day = 1
while day <= daysInMonth :

...
day = day + 1

The former seems a little clearer, so we will go with that. We can get
the numbers to print in columns in the same way we did in Program 3.4.5:
each number is printed with a formatted print statement using a fixed column
width, followed by a comma. At the completion of each row we do a single
print statement (with no comma) to terminate the line. Using a column width
of 5, this gives us the following code:

dayOfWeek = 0
for day in range (1 , daysInMonth + 1) :

print (”%5d” % day , end= ’ ’ ’ ’)
dayOfWeek += 1
i f dayOfWeek == 7 :

p r i n t ()
dayOfWeek = 0

This almost does what we need, but it makes every month start on Sunday.
This is where our startsOn variable comes into play. If a month starts on a
Wednesday, as does July 2009 in our example, startsOn will be 3. We want to
print blanks corresponding to the first 3 days of the week (Sunday, Monday and

78

Tuesday) and print a 1 in the column for Wednesday. Note that since we print
the numbers with

print (”%5d” % day , end= ’ ’ ’ ’)

we can print blanks that occupy the same column width with

print (”%5s ” % ” ” , end= ’ ’ ’ ’)

Here is the loop that prints the blanks:

dayOfWeek = 0
for day in range (0 , s t a r t sOn) :

print (”%5s ” % ” ” , end= ’ ’ ’ ’)
dayOfWeek += 1

The rest of our program is easy. We need to print a header with the names
of the days of the week. If we put them into a list we can use a for-loop to walk
through it; we print the names with the same column widths as the body of the
calendar:

for day in [”Sun” , ”Mon” , ”Tu” , ”Wed” , ”Th” , ” F r i ” , ” Sat ”] :
print (”%5s ” % day , end= ’ ’ ’ ’)

p r i n t ()

This is so simple because Python gives us good tools for working with lists and
strings.

Finally, we need to center the name of the month. Our calendar has 7
columns, each 5 spaces wide, so the calendar is a total of 35 spaces wide. The
name will occupy len(monthName) of these spaces, leaving 35−len(monthName)
left over. We want to print half of the leftover spaces prior to the name. There
is no easy way to use the formatted print-statements with a variable width, so
we use the * operator to make a string with the right number of blanks:

l e f t o v e r = 35−len (monthName)
print (” ” ∗(l e f t o v e r /2) , end= ’ ’ ’ ’)
p r i n t (monthName)

Here is the full program, with some comments inserted to make it more
readable:

3.5. DESIGNING CODE WITH LOOPS 79

This p r i n t s the c a l e n d a r f o r one month

def main () :
monthName = input (”Name o f month : ”)
daysInMonth = eval (input (”Number o f days i n the month : ”))
print (”What day o f the week does the month s t a r t on?”)
s t a r t sOn=eval (input (” Ente r 0 f o r Sunday , 1 f o r Monday , e t c : ”))

F i r s t we c e n t e r the month name .
l e f t o v e r = 42−len (monthName)
print (” ” ∗(l e f t o v e r /2) , end= ’ ’ ’ ’)
p r i n t (monthName)

Then p r i n t the names o f the days o f the week ,
i n columns :
f o r day i n [” Sun ” ,”Mon” ,”Tu” ,”Wed” ,”Th” ,” F r i ” ,” Sat ”] :

p r i n t (”%5s ” % day , end= ’ ’ ’ ’)
p r i n t ()

This i n d e n t s 5 b l ank s f o r each o f the days
o f the week p r i o r to the day t h i s month s t a r t s on :
dayOfWeek = 0
f o r day i n range (0 , s t a r t sOn) :

p r i n t (”%5s ” % ” ” , end=’ ’ ’ ’)
dayOfWeek += 1

F i n a l l y , we p r i n t the days i n the month ,
with a l i n e b reak a f t e r each Saturday :
f o r day i n range (1 , daysInMonth + 1) :

p r i n t (”%5d” % day , end= ’ ’ ’ ’)
dayOfWeek += 1
i f dayOfWeek == 7 :

p r i n t ()
dayOfWeek = 0

i f dayOfWeek != 0 :
p r i n t ()

main ()

Program 3.5.3: Calendar Program: FirstVersion

